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Abstract Floodmodeling at the regional to global scale is a key requirement for equitable emergency and
land management. Coupled hydrological‐hydraulic models are at the core of flood forecasting and risk
assessment models. Nevertheless, each model is subject to uncertainties from different sources (e.g., model
structure, parameters, and inputs). Understanding how uncertainties propagate through the modeling
cascade is essential to invest in data collection, increase flood modeling accuracy, and comprehensively
communicate modeling results to end users. This study used a numerical experiment to quantify the
propagation of errors when coupling hydrological and hydraulic models for multiyear flood event modeling
in a large basin, with large morphological and hydrological variability. A coupled modeling chain consisting
of the hydrological model Hydrologiska Byråns Vattenbalansavdelning and the hydraulic model
LISFLOOD‐FP was used for the prediction of floodplain inundation in theMurray Darling Basin (Australia),
from 2006 to 2012. The impacts of discrepancies between simulated and measured flow hydrographs on the
predicted inundation patterns were analyzed by moving from small upstream catchments to large
lowland catchments. The numerical experiment was able to identify areas requiring tailored modeling
solutions or data collection. Moreover, this study highlighted the high sensitivity of inundation volume and
extent prediction to uncertainties in flood peak values and explored challenges in time‐continuous
modeling. Accurate flood peak predictions, knowledge of critical morphological features, and an event‐
based modeling approach were outlined as pragmatic solutions for more accurate prediction of large‐scale
spatiotemporal patterns of flood dynamics, particularly in the presence of low‐accuracy elevation data.

Plain Language Summary Floods are among the most devastating natural hazards, affecting
multiple regions and millions of people each year. Accurate inundation predictions are vital information
for land and emergency management. This objective can be achieved through a cascade of numerical
models. However, each model is subject to uncertainties from different sources (e.g., input data, model
structure, and parameters), and an understanding of how these uncertainties are propagated through
each step of the modeling cascade is pivotal to improving inundation prediction accuracy. This study
investigated the impact of uncertainties in streamflow predictions on the accuracy of floodplain inundation
predictions. For this purpose, the Murray Darling Basin (Australia), a large basin that is affected by
destructive floods, was used as a case study. The analysis illustrated the high sensitivity of floodplain
inundation predictions to predicted streamflow peak values. Moreover, when attempting to model a long
time series of low‐ and high‐flow periods, uncertainties in the inundation patterns increased over time and
from upstream to downstream areas of the basin. These results demonstrated the need for accurate
predictions of streamflow peak values and suggested that focusing on the modeling of each large flood event
separately is a more effective strategy for reliable inundation predictions.

1. Introduction

Floods are among the most devastating natural hazards, affecting multiple regions and millions of people
each year. According to the United Nations, from 1995 through 2015, flooding alone accounted for 47% of
all weather‐related disasters worldwide, affecting 2.3 billion people (Wahlstrom & Guha‐Sapir, 2015).
Accurate flood modeling is one indispensable tool for improving predictions, increasing resilience, and
reducing economic losses of such events. A modeling cascade composed of a numerical weather prediction
model for the estimation of precipitation and meteorological variables, a hydrological model for the
simulation of rainfall‐runoff processes and the assessment of streamflow rates, and a hydraulic model for
streamflow routing and estimating floodplain inundation dynamics should be at the core of any flood
forecasting system and flood risk assessment model.
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Cascading from rainfall to floodplain dynamics is thus a pivotal component of any flood forecast and
flood risk analysis, and a number of studies have focused on the coupling of hydrologic and hydraulic
models, particularly at the catchment scale. In a pioneering study, Pappenberger et al. (2005) developed
a coupled flood model for the Meuse catchment (Belgium). Lian et al. (2007) then demonstrated that
the use of the coupled modeling approach could adequately predict peak flow time in the Illinois River
Basin (USA); Kleynhans et al. (2007) used this concept to analyze the impact of planning scenarios on
the ecology of the Nyl River in South Africa; and Bonnifait et al. (2009) studied a single catastrophic flood
event in France. The coupling approach was used by Gül et al. (2010) to test the efficiency of structural
flood control measures and by Mejia and Reed (2011) to investigate the effects of parameterized cross sec-
tion shapes on inundation modeling. This model combination was also applied in an urban context by
Domingo et al. (2010), Nanía et al. (2014), and Zhu et al. (2016). A few studies focused on the merging
of remote sensing data with coupled models. Montanari et al. (2009) calibrated a hydraulic model using
remotely sensed flood extents, and used this information to update the hydrologically modeled soil moist-
ure values. Matgen et al. (2010) sequentially updated the modeled water levels of a coupled model in a
synthetic study, while Giustarini et al. (2011) performed this updating using real (as opposed to synthetic)
data. Instead of using observed rainfall records as model input, Nam et al. (2014) used results from a
numerical weather prediction model as input to the sequence of models for short‐term flood inundation
prediction. Laganier et al. (2014), Nguyen et al. (2016), and Mai and De Smedt (2017) showed that the
coupled approach can adequately model flash floods and floodplain inundation. A coupled hydrologic‐
hydraulic modeling approach was recommended by Grimaldi et al. (2013) for flood hazard modeling,
by Felder et al. (2017) for probable maximum flood risk estimation, and by Sindhu and Durga (2017)
for flood damage mitigation. The potential of a coupled modeling approach to identify and predict flood
prone areas in ungauged catchments was recently shown by Komi et al. (2017) using the Oti River Basin
(West Africa) as case study.

Albeit flood risk assessment and real‐time forecasting have been traditionally undertaken at catchment and
national scales, recent improvements in global data sets, numerical algorithms, computing power, and
coupledmodeling frameworks have allowed the development and execution of floodmodels at the continen-
tal and global scales (e.g., Alfieri et al., 2013; Wu et al., 2014). These large‐scale floodmodels allow consistent
and equitable decision making (Thielen‐del Pozo et al., 2015; Ward et al., 2015), and their application in
developing countries and data‐scarce regions can be extremely helpful to reduce catastrophic impacts, as
demonstrated by the activities of the Global Flood Partnership (Alfieri et al., 2018).

Operational global‐ and continental‐scale flood forecasting systems are currently based on a weather
prediction module and a rainfall‐runoff hydrological module (Emerton et al., 2016). However, inclusion of
two‐dimensional hydraulic models into large‐scale flood forecast and risk assessment systems has been
advocated by a number of studies (e.g., Falter et al., 2016; Falter et al., 2015; Huang & Hattermann, 2018;
Schumann et al., 2016; Vorogushyn et al., 2018; Zhao et al., 2017) because it enables more accurate
predictions of floodplain inundation dynamics. Moreover, Bates et al. (2018) highlighted the need to use
hydraulic models to predict the duration of flooding, as this parameter largely affected the impacts of flood
events in a number of recent disasters, such as the floods in Queensland (Australia) in 2010–2011, in
Thailand in 2011, in England and Wales (UK) in 2014, and, more recently, the 2017 hurricane floods in
the United States. Nevertheless, the technical hurdles (mainly, data availability and computational power)
that have so far hindered routine implementation of two‐dimensional hydraulic models at the large scale
are sensibly diminishing (e.g., Bates et al., 2018; Moretti & Orlandini, 2017; Neal et al., 2018), and recently,
large‐scale flood modeling approaches have begun to couple hydrologic and hydraulic models. For instance,
Biancamaria et al. (2009) optimized the river depth and roughness coefficient of a coupled system for the Ob
River in Western Siberia; Yamazaki et al. (2013) applied a new river routing model to provide global flood
hazard maps, and the same model was used by Hirabayashi et al. (2013) to produce global flood risk maps
under climate change. Schumann et al. (2013) then used remote sensing data to calibrate and evaluate a
coupled hydrologic‐hydraulic model of the Zambezi River (Mozambique), Alfieri et al. (2014) derived a flood
hazard map for Europe using a long‐term streamflow simulation, Sampson et al. (2015) produced global
flood hazard maps at 3‐arc‐sec resolution for several return periods, and Dottori et al. (2016) proposed an
evaluation framework for global flood hazard mapping. More recently, Dottori et al. (2018) coupled hydro-
logical models with the mass‐conservative routing scheme presented in Yamazaki et al. (2011) to estimate
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human losses and economic impacts of river flooding at the global scale under a range of climate
change scenarios.

However, each component of the floodmodeling chain is subject to uncertainties from different sources (e.g.,
model structure, parameters, and inputs). Improving the understanding of the propagation of these uncer-
tainties through the modeling cascade is essential to pinpoint strategies to define areas of further investiga-
tion, invest in data collection, improvemodel accuracy, and comprehensively communicatemodeling results
to end users (e.g., Trigg et al., 2016; Ward et al., 2015). Such a rigorous assessment requires identification of
all the sources of uncertainty within the modeling cascade and results in a large number of model runs with
extremely high computational costs, especially when using distributed models (e.g., Pappenberger et al.,
2005). Simplified approaches designed to reduce the computational burden of uncertainty estimation were
applied, for instance, by Pappenberger et al. (2005), McMillan and Brasington (2008), and Rodríguez‐
Rincón et al. (2015) for event‐based analysis; by Falter et al. (2016) in a continuous modeling approach;
and by Sampson et al. (2014) and Zischg et al. (2018) in a flood damage assessment model.

More specifically, Pappenberger et al. (2005) applied a simplified generalized likelihood uncertainty estima-
tion (GLUE) approach to predict the 1995 flood in the Meuse River (Belgium). In this case study, uncertain-
ties in the ensemble rainfall‐runoff predictions had limited impact on the floodplain inundation extent
uncertainty. However, inundation‐level uncertainties due to erroneous discharge predictions increased from
upstream to downstream (i.e., moving away from the input point), especially in regions of constricted flow.
McMillan and Brasington (2008) similarly applied a simplified GLUE methodology for the definition of
probabilistic maps of flood extent with 10‐ to 1,000‐year return period in the Granta River (UK). They
showed that inundation extents were more sensitive to uncertainty in rainfall‐runoff modeling than to var-
iations in the main hydraulic model parameter (i.e., hydraulic roughness). Rodríguez‐Rincón et al. (2015)
used a hindcast scenario to study the propagation of meteorological and hydrological model uncertainties
to the results of a hydraulic model used for the prediction of inundation extents in the 2009 flood of the
Tonalá River (Mexico). The case study was a valley filling event, and all hydraulic simulations produced
similar inundation extents, with small propagation of meteorological and hydrological errors to the flood
map. Falter et al. (2016) presented a modeling cascade for continuous, large‐scale flood risk assessments.
The approach was applied to the Elbe catchment (Germany) for the period of 1990–2003, and uncertainties
were evaluated, where possible, with observed data. Here low‐quality topographic data and lack of represen-
tation of dike breaches caused large uncertainties in the results of the hydraulic model. Sampson et al. (2014)
and Zischg et al. (2018) analyzed the impact of uncertain precipitation data on loss estimates in Dublin
(Ireland) and in the Aare River basin (Switzerland), respectively. Loss estimates had high sensitivity to
relatively small percentage changes in hydrograph peak or volume and, as previously shown by Neal et al.
(2013), to superimposition of the flood peaks between tributaries.

The above studies identified large variability of the impact of discharge hydrographs inaccuracy and uncer-
tainty on floodplain inundation extent as a function of catchment morphology and flood event characteris-
tics. A better understanding of the impact of uncertainties of simulated flow hydrographs on the output of
hydraulic models is therefore required (Dottori et al., 2016; Schumann et al., 2013) to meet the need for more
accurate flood modeling for both current risk and climate change projections (e.g., Bates et al., 2018; Trigg
et al., 2016). Consequently, to add to the current state of knowledge in large‐scale flood modeling and
prediction, this study aims to investigate the propagation of errors when coupling hydrological and
hydraulic models. For this purpose, a numerical experiment was designed to develop a novel quantitative
analysis of the impact of discrepancies between simulated and measured time series of discharge data on
the prediction of long‐term patterns of floodplain inundation volumes and extents in a large basin, where
morphological and hydrological features vary spatially. A quantitative methodology for the comparison of
input discrepancies and discrepancies in floodplain inundation dynamics was introduced to (1) investigate
whether discrepancies in input time series are enhanced or damped by the hydraulic model for the predic-
tion of floodplain inundation volumes and extents; (2) identify causes for such effects; (3) investigate
whether continuous, long‐term modeling of low and high flow diminishes or exacerbates the problem;
and (4) clarify how input‐driven discrepancies in floodplain inundation predictions propagate from
upstream to downstream. The methodology was applied to a state‐of‐the‐art modeling framework that
was implemented in a large basin with large morphological and hydrological variability. More specifically,
the coupled modeling chain consisted of two widely used models, that is, the hydrological model
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Hydrologiska Byråns Vattenbalansavdelning (HBV; Lindström et al., 1997) and the hydraulic model
LISFLOOD‐FP (Bates et al., 2010; Neal, Schumann, & Bates, 2012). Simulated and measured discharge
time series were alternatively used as input to LISFLOOD‐FP for the prediction of floodplain inundation
volumes and extents in the Murray Darling Basin (MDB; Australia) from 2006 to 2012. According to this
experimental design, differences between simulated and measured discharge time series were known, and
this knowledge allowed quantifying the impacts of discrepancies in forcing data on the prediction of
inundation volumes and extent. Moreover, the cascading of discrepancies in floodplain inundation
predictions during consecutive low‐ and high‐flow periods and their interactions at different spatial scales,
from small upstream catchments to larger lowland catchments, were analyzed according to hydrograph
characteristics (e.g., total input volume and flood peak values).

The numerical experiment presented here identified the main drivers exacerbating the impacts of differ-
ences in forcing data on the prediction of inundation volumes and extents. Based on the results of this study,
recommendations for more accurate predictions of the spatiotemporal patterns of surface water extent and
flood dynamics at the large (basin, continental, or global) scale were formulated.

2. Study Area and Data

The study area used here is the MDB, located in the southeast of Australia (Figure 1a). The MDB is a large
semiarid region that covers 1 × 106 km2, being 14% of Australia's land area and containing Australia's three
longest rivers, the Darling (2,740 km), Murray (2,530 km), and Murrumbidgee (1,690 km). The MDB gener-
ates 39% of the national income derived from agricultural production, it includes over 30,000 wetlands, and
it is home to a number of endangered species of birds, fish, and mammals (Murray‐Darling Basin Authority,
2010; https://www.murraydarlingwetlands.com.au/wetlands/quick‐facts.asp).

The MDB is subject to El Niño‐Southern Oscillation‐induced climatic variability with long dry spells, punc-
tuated by large flood events (Arthington & Balcombe, 2011; Bunn et al., 2006). This variability was recently
exacerbated by the Millennium Drought from the mid‐1990s to 2009, which was followed by extreme floods
in 2010–2011, commonly referred to as the La Niña floods (Leblanc et al., 2012). The MDB has a pronounced
climate gradient with average annual rainfall decreasing and climate variability and evapotranspiration
increasing from the southeast to the northwest (Murray‐Darling Basin Authority, 2010). Due to this climate
gradient, flooding regimes differ substantially across the MDB, with many of the ephemeral catchments in

Figure 1. Study area. (a) Location of the Murray Darling Basin. (b) Murray Darling Basin: river network; discharge gauge
stations; 28 Hydrology Reporting Regions; areal subdivision according to the basin hierarchy approach (section 3.3.1).
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the northern area affected by intensive flood bursts in the summer months and rivers in the southern area
typically affected by long flood events driven by rainfall and snowmelt in winter and spring (Bunn et al.,
2006; Penton & Overton, 2007).

The river network is composed of 119 major rivers, of which 71 are perennial (Figure 1b). The Australian
Hydrological Geospatial Fabric (Australian Bureau of Meteorology, 2015) delineates the boundaries of 28
drainage divisions (Hydrology Reporting Regions [HRR]). Drainage divisions are the key data set for hydro-
logical analysis (e.g., Huang et al., 2013); in this study drainage divisions were allocated to the North‐East,
North‐West, Centre‐North, South, and Centre‐South areas of the basin as seen in Figure 1b and as further
explained in section 3.3.1.

3. Methods
3.1. Hydrologic Model

The hydrologic model used in this study was the HBV model (Lindström et al., 1997). The HBV is a lumped
conceptual model that uses precipitation and potential evapotranspiration as input. For streamflow predic-
tion, the precipitation is partitioned into a soil reservoir, a slow reservoir, and a fast reservoir. Modeled
streamflow is then routed to the catchment outlet using a triangular unit hydrograph. The three reservoirs
and the unit hydrograph are characterized by nine parameters. A detailed description of the HBVmodel can
be found in Pauwels et al. (2013).

Model simulations were performed for a 7‐year period, from 1 January 2006 through 31 December 2012, at a
daily time step. Measured daily precipitation data in the form of 0.01° maps are provided by the Australian
Bureau of Meteorology and stored in the Australian National University Climate database. Monthly 0.01°
maps of potential evapotranspiration data were generated by the eMAST‐R Package (Xu et al., 2018). Both
data sets are available from the Australian National Computational Infrastructure (Jones et al., 2009).
Hourly time series of discharge observations at 148 gauge stations (Figure 1b, full and hollow black dots)
were available from the following agencies and government services: New South Wales Office of Water,
Queensland Department of Natural Resources and Mines, and Victoria Department of Environment and
Primary Industries.

The model was calibrated using particle swarm optimization (Kennedy & Eberhart, 1995) in order to
minimize the root mean square deviation (RMSD, equation 10, Table 1) between simulated and measured
discharge values, denoted by hbv and g, respectively (Table 1). A specific calibration for high flows is
currently not routinely included in the forecast framework at large and global scales (Hirpa et al., 2018)
and was not implemented here. The performance of the calibrated model was evaluated by computing the
Nash‐Sutcliffe (NS) efficiency (Nash & Sutcliffe, 1970; equation 12, Table 1) over the 148 modeled subcatch-
ments of the MDB. The highest and lowest NS values were 0.92 and 0.04, respectively; the quartiles were
0.24, 0.42, 0.59, and 0.75. These results indicated that the calibrated model can adequately simulate the
rainfall‐runoff processes in a basin with a large hydrological variability. This model performance was
deemed adequate for the purpose of this study, which was not the accurate reproduction of real events
but the analysis of the impacts of plausible discrepancies between simulated and measured flows on flood-
plain inundation dynamics within the current flood forecasting framework at the large scale.

3.2. Hydraulic Model

LISFLOOD‐FP, a computationally efficient two‐dimensional hydraulic model (Bates et al., 2010), was used to
generate large‐scale flood inundation across the MDB. LISFLOOD‐FP operates on a regular grid, with water
flow through each model grid cell simulated by solving the inertial momentum equation through a single
explicit finite difference scheme. This simplified form only neglects the convective acceleration term in the
full shallow water equations and thereby overcomes limitations related to considerable time step decreases
in explicit diffusive models that also neglect local inertia. The continuity equation is then used to update
water depths at each time step. The resulting model is simple yet contains enough physics to describe flood
processes adequately while requiring an order of magnitude fewer computational operations than does a full
shallow water model (Neal, Villanueva, et al., 2012). Moreover, the model can simulate river and floodplain
hydraulics at relatively coarse spatial resolutions by using a subgrid formulation that allows river channels
with widths smaller than those of the nominal model resolution (Neal, Schumann, & Bates, 2012).
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For this study, the setup of the subgrid formulation of LISFLOOD‐FP was the same as in the continental‐
scale version presented in Schumann et al. (2016). Terrain morphology was represented by the freely avail-
able Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), which was corrected for
vegetation canopy height using the global Ice, Cloud, and land Elevation Satellite (ICESat‐1) canopy data
set (Simard et al., 2011) as explained in Schumann et al. (2013). The Surface Network provided by the
Australian Hydrological Geospatial Fabric (Australian Bureau of Meteorology, 2015) was used to identify
river cells; channel bathymetry was then estimated within the model code using the methodology proposed
by Neal, Schumann, and Bates (2012) and global parameters presented in Andreadis et al. (2013). Compared
to the continental‐scale version, the only difference was that all major rivers in theMDB, rather than just the
rivers draining areas over 10,000 km2, were explicitly represented in this study (Figure 1b). The continental‐
scale model configuration was calibrated on the 1995 flood event in the Murrumbidgee River (HRR 12);
inundation extents predicted by a 40‐year model run were then compared to a multiyear remote sensing‐
derived maximum extent (Mueller et al., 2016), resulting in a correct predicted flooding statistic of 89.6%
and an area in error of 10.9% (Schumann et al., 2016). Accurate regional calibration of hydraulic models
is extremely time and data demanding (Dottori et al., 2016), and discrepancies in input data are expected
to have larger impacts on the prediction of floodplain dynamics than do model parameters (e.g.,
McMillan & Brasington, 2008). Consequently, the use of the same model parameterization as the
continental‐scale version was considered a pragmatic, effective solution for the purpose of providing a rea-
listic representation of inundation dynamics. The model implementation also included lakes and reservoirs
from the Global Lake andWetland Database (Lehner & Döll, 2004). Reservoirs and channels were filled with
an average water level before starting the computations and were handled implicitly within the model
numerical scheme, without any operational rules or sudden water releases. In other words, the model used
the same numerical scheme everywhere, including across the surface of lakes and reservoirs. Moreover, agri-
cultural, industrial, or other water withdrawals that were not already captured by a stream gauge were not
accounted for in the current model setup. The simplifications and assumptions listed above clearly affect
model results, and more research is needed to understand how to correctly implement highly nontrivial ele-
ments such as reservoir operations and water withdrawals in hydraulic models. However, albeit relatively
simple, the model setup used in this study can be considered a best first effort for the representation of flood-
plain inundation dynamics in the MDB.

The model was forced using daily discharge time series at 81 input points; these input points were the gauge
stations located along the major river network (Figure 1b, full black dots). Downstream boundary conditions
were imposed using the thalweg gradient as a normal depth flow condition. Since seasonal evaporative water
loss is significant in the MDB (Leblanc et al., 2012), interpolated and gridded multiyear averages of daily
satellite‐derived evapotranspiration fields provided by the Global Land Evaporation Amsterdam Model
(Martens et al., 2017; Miralles et al., 2011) were included in LISFLOOD‐FP. More specifically, these losses
were included in the model following the implementation by Neal, Schumann, and Bates (2012).
Floodplain flow paths and inundation extents and volumes were simulated at 1‐km resolution.

3.3. Coupled Modeling Approach and Data Analysis

The coupling between HBV and LISFLOOD‐FP was external (offline) and unidirectional; that is, the contin-
uous output from HBV was used as continuous input into LISFLOOD‐FP. The two models remained inde-
pendent from each other, meaning that important hydraulic effects, such as backwater, did not impact the
hydrologic model. Nevertheless, backwater effects were expected to be small within the design of this study
where HBVwas used to model only upstream catchments and normal depth conditions were used as bound-
ary conditions for LISFLOOD‐FP. Consequently, such a relatively simple coupling strategy might affect
model results, but the impacts of dynamic model feedback were assumed negligible when compared to
the other sources of nontrivial uncertainty (e.g., the resolution and accuracy of the topographic data).
Moreover, the use of dynamic coupling for themodeling of floodplain inundation dynamics at the large scale
would require extremely large computational resources that hamper both the feasibility and transferability
of the methodology to other study areas (Laganier et al., 2014; Lerat, 2009). Conversely, external unidirec-
tional coupling has been successfully applied in a number of previous analyses (Bravo et al., 2012; Lian
et al., 2007; Mejia & Reed, 2011), and it was hence considered a sensible approach for the purposes of this
study. In fact, more research is needed to effectively incorporate dynamic model feedback in a coupled
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modeling framework at the large scale. In this study, HBV‐simulated daily discharge values were used as
input to the hydraulic model LISFLOOD‐FP for the prediction of floodplain inundation volumes and
extents in the MDB from 1 January 2006 to 31 December 2012. This model setup will hereafter be referred
to as LISFLOODFP‐HBV. Measured daily discharge values for the same 7‐year period were then used as
input to LISFLOOD‐FP to produce benchmark predictions of floodplain inundation dynamics. This latter
model setup will thereafter be referred to as LISFLOODFP‐MEAS. Missing data in measured time series
were replaced with HBV‐simulated flows. Simulated and measured discharge time series of gauge stations
located along the same river were edited to avoid double counting of inflow volumes.

It is here noted that the simulation period of the hydraulic model was the same as the calibration period of
the hydrologic model (section 3.1). Although hydrological models calibrated over a historical period are
often used in a forecasting framework, the dependence of the optimal parameter set on the climate charac-
teristics of the calibration period and the challenges of the transferability of these parameters to forecasting
scenarios have been previously demonstrated (Brigode et al., 2013; Romanowicz & Booij, 2015; Vaze et al.,
2010). Consequently, in this experimental design, discrepancies between modeled and measured discharge
hydrographs were expected to be lower than in a real forecasting scenario. Moreover, as explained above, the

Table 1
Symbols and Performance Metrics Used for the Continuous and Event‐Based Time Series Analysis

Definitions Symbols

• Cumulative input volume hbvi = monthly (daily) input volume predicted
by HBV for month (day) iSimulated by HBV: iv;HBV α; βð Þ ¼ ∑β

i¼α hbvið Þ (1)

Measured: iv;G α; βð Þ ¼ ∑β
i¼α gið Þ (2) gi = monthly (daily) input volume measured by the gauge

stations for month (day) i

• Increment of floodplain inundation volume
LISFLOODFP‐HBV: fv,HBV(α, β)= fv,HBVβ − fv,HBVα (3) fv,HBVi= monthly maximum floodplain inundation

volume predicted by LISFLOODFP‐HBV for month iLISFLOODFP‐MEAS: fv,G(α, β)= fv,Gβ − fv,Gα (4)

• Increment of floodplain inundation extent fv,Gi= monthly maximum floodplain inundation volume
predicted by LISFLOODFP‐MEAS for month iLISFLOODFP‐HBV: fe, HBV(α, β)= fe,HBVβ − fe,HBVα (5)

LISFLOODFP‐MEAS: fe,G(α, β)= fe,Gβ − fe,Gα (6) fe,HBVi= monthly maximum floodplain inundation extent
predicted by LISFLOODFP‐HBV for month i

• Volume and flood extent differences
Input volume:
Δ iv(α, β)= iv,HBV(α, β) − iv,G(α, β) (7) fe,Gi= monthly maximum floodplain inundation extent

predicted by LISFLOODFP‐MEAS for month iFloodplain inundation volume:
Δ fv(α, β) = fv,HBV(α, β) − fv,G(α, β) (8)

Floodplain inundation extent: α = first month (day) of the evaluation period
Δ fe(α, β)= fe,HBV(α, β) − fe,G(α, β) (9) β = last month (day) of the evaluation period

• Performance metrics for the continuous simulation analysis

Root mean square deviation: RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1 simi−measið Þ2
M

q
(10)

simi ¼

hbvi

iv;HBV 1; ið Þ
fv;HBV 1; ið Þ
fe;HBV 1; ið Þ

8>>><
>>>:Percent bias: PBIAS = 100* ∑M

i¼1 simi−measið Þ
∑M

i¼1measi

(11)

Nash‐Sutcliffe: NS ¼ 1−
∑M

i¼1 measi−simið Þ2
∑M

i¼1 measi−measð Þ2 , meas ¼ ∑M
i¼1measi
M

(12) measi ¼

gi
iv;G 1; ið Þ
fv;G 1; ið Þ
fe;G 1; ið Þ

8>>><
>>>:

R‐squared: R2 = 1−
∑M

i¼1 measi−bsið Þ2
∑M

i¼1 measi−measð Þ2 ,
bsi ¼ a*simi þ b,

(13) M= total number of months (days) used in the
numerical experiment (e.g., M = 84 months)

a and b are the coefficients of the linear regression

• Performance metrics used in the event‐based time series analysis

Inputs ratio: IR ¼ iv;HBV α¼start;β¼endð Þ
iv;G α¼start;β¼endð Þ (14) α = start: starting month of the low‐/high‐flow period

Volumes difference ratio: VDR= Δ fv α¼start;β¼endð Þ
Δ iv α¼start;β¼endð Þ (15) β = end: end month of the low‐/high‐flow period

Peaks ratio: PR ¼ max iv;HBV α¼start;β¼endð Þð Þ
max iv;G α¼start;β¼endð Þð Þ (16)
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correction of the missing data in the measured time series further reduced the difference between simulated
and measured discharge time series. For these reasons, this study had the merit to allow the investigation of
the impact of relatively small input discrepancies in the prediction of floodplain inundation volumes and
extents.

Monthly maximum values of floodplain inundation volumes and extent predicted by LISFLOODFP‐HBV
(i.e., using modeled streamflow; thereafter indicated with fv,HBVi and fe,HBVi as explained in Table 1)
and LISFLOODFP‐MEAS (i.e., using gauged streamflow; thereafter indicated with fv,Gi and fe,Gi as
explained in Table 1) were compared by counting the number of flooded cells in the floodplain (i.e., river
cells were omitted). A cell in the floodplain was flagged as flooded if the computed water depth was higher
than 5 cm; a sensitivity analysis not shown in this paper demonstrated that the use of a different threshold
value (1, 10, and 50 cm) did not affect the outcomes of the analysis presented thereafter, attributed to the
inherently large vertical error variations in the SRTM topography (a discussion of these errors can be found
in Domeneghetti, 2016). Discrepancies between simulated and measured cumulative input volumes (equa-
tions 1 and 2 in Table 1) over a lapse of time could lead to discrepancies in the prediction of floodplain
dynamics. Increments of monthly maximum values of floodplain inundation volumes and extent (equations
3 to 6 in Table 1) were computed to evaluate the cumulative effect of discrepancies in input data. Input
volumes and inundation volumes were measured in cubic kilometer, and inundation extents were reported
as the number of cells. Inundation areas can be obtained by multiplying the number of cells by the square
value of the hydraulic model cell size (i.e., 1 km2); in this paper, the choice of reporting the number of cells
allowed a holistic understanding of the interactions between input discrepancies and model resolution and
thus their impact on predicted inundation dynamics.
3.3.1. Basin Hierarchy Approach
The analysis was performed using a basin hierarchy approach. More specifically, the analysis first focused on
the upstream subcatchments, where inundation extents and volumes are caused by discharge time series of
input points located within the same subcatchment area. These upstream subcatchments are hydrologically
independent and represent level 1 of the basin hierarchy approach introduced here. Moving from upstream
to downstream, the aggregation of a number of upstream, hydrologically independent subcatchments of
level 1 allowed the analysis of larger areas. In these areas, inundation extents and volumes are caused by
the combination of discharge hydrographs of input points located within the area itself and the routing of
discharge hydrographs introduced in upstream (level 1) areas. These clusters represent level 2 of the
hierarchy approach. Level 3 is defined by the aggregation of level 2 clusters, allowing the analysis of
inundation extents and volumes in downstream areas, which are often far from the input points. This
aggregation strategy is repeated until inclusion of the total basin area. Consequently, the number of levels
required by this approach depends on the morphology of the basin under investigation.

In this study, the 28 HRR (Figure 1b) weremodified and aggregated to first delineate hydrologically indepen-
dent subcatchments of level 1 and then define the aggregated subcatchments clusters of levels 2–4. Huang
et al. (2013) previously used inundation extents derived from remote sensing (Landsat) images and a
DEM to edit the boundaries of the HRR in order to generate ecohydrological zones with enhanced flow con-
nectivity. A similar aim was pursued here by using a pragmatic approach based on flow path connectivity, as
shown by the results of the hydraulic model. More specifically, outputs of the hydraulic model were used for
the definition of the aggregated areas, allowing correct inclusion of inundated areas from a set of input flow
hydrographs. For this reason, as seen in Figure 1b, lines representing the downstream boundary of the inves-
tigated area for different basin hierarchy levels do not often coincide with the boundaries of the HRR. Level 1
hydrologically independent areas are often the upstream area of the HRR. Level 2 clusters are (i) the South
cluster (S), including the subcatchments contributing to the Murrumbidgee River; (ii) the North‐West
cluster (NW), including the Paroo and Warrego Rivers; and (iii) the North‐East cluster (NE), including
the subcatchments contributing to the Balonne‐Bokhara‐Narran Rivers. Level 3 is the union of the level 2
clusters and downstream HRR; more specifically, level 3 clusters are the Centre‐North (CN) and
Centre‐South (CS) clusters. The allocation of level 1 areas to level 2 and level 3 clusters is also listed in
Table S1 (supporting information). Level 4 fully encompasses the MDB.
3.3.2. Continuous Simulation Analysis

For each level, aggregated simulated andmeasured input discharge time series were computed by adding the
time series of all the input points affecting the area of interest from 1 January 2006 to 31 December 2012,
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according to the spatial subdivision described in section 3.3.1. Simulated daily, monthly, and cumulative
time series of input volumes (hbvi; iv,HBV as in Table 1) were compared with measured daily, monthly,
and cumulative time series (gi; iv,G as in Table 1) by computing the RMSD, percent bias (PBIAS), NS,
R‐squared (R2) according to equations 10 to 13 in Table 1. The same statistics were used to compare time
series of monthly maximum inundation volumes and extents computed by LISFLOODFP‐HBV with the
results of LISFLOODFP‐MEAS; the latter results were used as a benchmark. The RMSD and PBIAS values
provide information on the magnitude and sign of the discrepancy between simulation‐based and
measurement‐based results and are discussed in detail in the paper. The values of NS and R2 allow a more
comprehensive analysis of the results and are listed in the supporting information (Tables S1–S3).

The statistics of equations 10 to 13 were complemented by a comparison between the cumulative input
volumes and the floodplain inundation volumes and extents evaluated at the end of the 7‐year simulation
period. More specifically, the difference between the cumulative simulated and measured input volumes
Δ iv(α = 1, β = 84) (equation 7, Table 1) at the end of the 7‐year simulation period was compared to the
difference between the LISFLOODFP‐HBV‐ and LISFLOODFP‐MEAS‐predicted monthly maximum
floodplain inundation volumes Δ fv(α = 1, β = 84) and extents Δfe(α = 1, β = 84) (equations 8 and 9,
Table 1) at the end of the 7‐year simulation period (84 months). This analysis was included in the assessment
of the continuous modeling approach as it allows comparing the difference between input volumes with the
difference between floodplain inundation volume and extent at the end of the study period. Albeit limited to
a 7‐year time period, it was assumed that this analysis allowed an insight on the long‐term response of the
hydraulic model to discrepancies in discharge input data.

3.3.3. Event‐Based Time Series Analysis

An event‐based analysis allowed investigation of the behavior of the models during low‐flow and high‐flow
periods. Low‐ and high‐flow periods were defined based on cumulative values of measured input volumes
using a simple but automatic algorithm. The algorithm computed the average monthly input volume Vm

for the full time series (2006–2012; i.e., total input volume/total number of months). Months having an input
volume smaller than Vm belonged to low‐flow periods; months having an input volume larger than Vm

belonged to high‐flow periods. The largest monthly input volume was used to identify large high‐flow per-
iods; remaining high‐flow periods were classified as small to moderate high‐flow periods. Each low‐ and
high‐flow period was isolated from the full time series, and the analysis of impacts of discrepancies in the
input data on the modeled inundation extent and volumes was achieved by computing the indices inputs
ratio (IR), volumes difference ratio (VDR), and Peaks Ratio (PR) according to equations 14 to 16 in Table 1.

More specifically, for each low‐ or high‐flow period, IR is the ratio of simulated to measured input volume,
meaning that IR is higher than 1 when the hydrological model overestimates the measured discharge data
and lower than 1 for underestimation. VDR is the ratio of the difference of the monthly maximum floodplain
inundation volumes predicted by LISFLOODFP‐HBV and LISFLOODFP‐MEAS to the difference of the
simulated and measured input volumes. These differences are the increments from the start to end of the
selected period (equations 8 and 7 in Table 1). VDR is positive when the largest input time series leads to
the largest inundation volume; it is negative when the smallest input time series leads to the largest inunda-
tion volume. Moreover, absolute values of VDR larger than 1 indicate that the hydraulic model exacerbates
the difference between the input time series. It is noted here that a theoretically perfect hydrological model
would lead to a zero denominator in equation 15. However, such a condition did not occur in this analysis. IR
and VDR were evaluated from the start to end of each selected low‐ or high‐flow period. PR was computed
only for high‐flow periods and it is defined as the ratio of the simulated input flood peak to the measured
input flood peak.

Finally,Δfv(α, endLHF) andΔfe(α, endLHF) are the difference between monthly maximum floodplain inun-
dation volumes and extents predicted by LISFLOODFP‐HBV and LISFLOODFP‐MEAS during large high
flows (LHF; equations 8 and 9 in Table 1). These differences were defined in two different ways to analyze
the outcomes of a continuous modeling approach as opposed to an event‐based modeling approach. In
detail, equations 8 and 9 were solved with α= 1 to analyze the outcomes of a continuous modeling approach.
In this case, LISFLOODFP‐HBV and LISFLOODFP‐MEAS inundation volumes and extents were retrieved
at a snapshot in time and represented the cumulative maximum floodwater expansion after the investigated
flood event. Conversely, when exploring the outcomes of an event‐based modeling approach, equations 8
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and 9 were solved with α = startLHF; that is, LISFLOODFP‐HBV and LISFLOODFP‐MEAS inundation
volumes and extents were computed as increments from the start to end of the flood event. A schematic
of this is shown in Figure 2a.

4. Results
4.1. Hydrologically Independent Subcatchments (Level 1)
4.1.1. Continuous Simulation Analysis
Table 2 lists mean and median values of the statistics of equations 10 and 11 computed for all of the hydro-
logically independent subcatchments of level 1. The statistics of equations 10 to 14 for each hydrologically
independent subcatchment are reported in Table S1 (supporting information). As anticipated in
section 3.1, HBV‐simulated discharge values could adequately reproduce the hydrological variability of
the MDB. The median RMSD values for daily and cumulative time series of input volumes were 0.001 and
0.305 km3, respectively. The RMSD values of the floodplain inundation volumes were generally lower than
the RMSD values of the cumulative volume inputs (median RMSD of floodplain inundation volumes was
0.052 km3). The high values of theNS and R2 of the time series of floodplain inundation volumes and extents
(median values were 0.78 and 0.92 for the NS and 0.80 and 0.89 for R2, respectively) highlighted a good
overall agreement between the outcomes of LISFLOODFP‐HBV and LISFLOODFP‐MEAS (Table S1). The
PBIAS of the floodplain inundation volumes and extents predicted by LISFLOODFP‐HBV and
LISFLOODFP‐MEAS were consistently lower than the PBIAS of the cumulative volume input data (median
values were 33 and 17 for floodplain inundation volumes and extent, respectively, and 57 for the cumulative
input volume). These results suggested that flood wave routing could (at least) partially mask differences in
the input time series.

However, the MDB has a large morphological and hydrological variability, and different patterns in sub-
catchment behaviors were identified. Discrepancies between simulated and measured discharge time series
were small in a number of subcatchments (e.g., 1, 2, 5, 12, and 19), thus leading to negligible discrepancies in
predicted floodplain inundation volumes and extents (Table S1). Conversely, some subcatchments (e.g., 3, 5,
13, 15, 23, and 24) resulted in negative values of PBIAS and low values of NS of the predicted time series of
monthly maximum inundation volumes and extent (Tables 2 and S1). Moreover, despite the total difference
Δiv(α= 1, β= 84) between cumulative values of simulated andmeasured input volumes being positive for all
the subcatchments, the difference Δfv(α = 1, β = 84) between floodplain inundation volumes predicted by
LISFLOODFP‐HBV and LISFLOODFP‐MEAS was negative for 11 out of 19 subcatchments (as shown by
the results for subcatchment 11, by the mean and median values in Tables 2 and S1). These negative values
indicated that despite LISFLOODFP‐HBV being forced with higher total input volumes, it resulted in
smaller total inundation volumes than did LISFLOODFP‐MEAS. The understanding of these results was
achieved with an in‐depth event‐based analysis.
4.1.2. Event‐Based Time Series Analysis
As explained in section 2, years 2006 to 2009 were generally characterized by low‐flow conditions with some
small to moderate high‐flow periods (2008), while large high flows occurred in 2010, 2011, and 2012. An
extensive effort for the identification of patterns in the response of floodplain inundation dynamics to
discrepancies in input data during low‐ and high‐flow periods led to the identification of two representative
subcatchments, namely, subcatchment 11 and subcatchment 23. More specifically, subcatchment 11 belongs
to the southern area of the MDB, while subcatchment 23 belongs to the northern area of the MDB. Results
for these subcatchments are presented into detail thereafter, and a list of subcatchments having similar
behaviors is provided. Table 3 shows the values of the performance metrics of equations 8, 9, 14, to 16 com-
puted for subcatchments 11 and 23 and the mean and median values of all of the level 1 subcatchments. The
results for each hydrologically independent subcatchment are reported in Table S2 (supporting informa-
tion). Figures 2a and 2c show the time series of simulated and measured discharge data (monthly values
and cumulative values) as well as floodplain monthly maximum inundation volumes predicted by
LISFLOODFP‐HBV and LISFLOODFP‐MEAS for subcatchments 11 and 23. In the MDB, measured dis-
charge during low flows is almost negligible compared to high flows, and themaximummonthly inundation
volumes and extents are the outcome of the total amount of discharge cumulated over high‐flow days.
Consequently, use of input monthly values in Figures 2a and 2c (and subsequently in Figures 4a, 4c, 4e,
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and 5a) allowed a straightforward visualization of the relationship between inputs and maximum
inundation volumes.
4.1.2.1. Low‐flow periods
As shown in Tables 3 and S2, during low‐flow periods the simulated discharge values were higher than the
measurements with IR consistently higher than 1. The discrepancies in input volumes were reduced by the
flow routing and VDR was slightly higher than 0, indicating that the inundation volumes predicted by
LISFLOODFP‐HBV were slightly larger than the values predicted by LISFLOODFP‐MEAS. This result

Figure 2. Analysis of level 1 areas. (a, c) Time series of gauged and modeled input volumes (monthly and cumulative values) and monthly maximum floodplain
inundation volumes predicted by LISLOODFP‐MEAS and LISFLOODFP‐HBV; Δfv(1, endLHF) = B2 − B1 and Δfv(startLHF, endLHF) = (B2 − A2) − (B1 − A1).
(b, d) Event‐based comparison of differences of input volumes and differences of monthly maximum floodplain inundation volumes; Δiv(α = start, β = end) and
Δfv(α = start, β = end), as defined in Table 1, equations 7 and 8, respectively. (a, b) Level 1 subcatchment 11. (c, d) Level 1 subcatchment 23.

Table 2
Continuous Time Series Analysis of Hydrologically Independent Subcatchments (Level 1)

Subcatchment

Daily input volume Cumulative input volume Floodplain inundation volume Floodplain inundation extent

RMSD
(km3)

PBIAS
(%)

RMSD
(km3)

PBIAS
(%)

Δiv(1,84)
(km3)

RMSD
(km3)

PBIAS
(%)

Δfv(1,84)
(km3)

RMSD
(Cells n.) PBIAS (%)

Δfe(1,84)
(Cells n.)

11 0.001 13.4 0.144 65.9 0.099 0.074 61.1 −0.016 52 48.0 −5
23 0.011 43.2 2.954 57.3 5.699 0.395 −1.1 0.080 123 1.4 7
Mean level 1 0.003 40.1 0.512 69.4 0.746 0.093 26.1 −0.001 40 23.2 3
Median level 1 0.001 28.0 0.305 57.3 0.316 0.052 32.9 −0.001 18 16.5 −5

Note. RMSD = root mean square deviation as in equation 10. PBIAS = percent bias as in equation 11. Δiv(1, 84) = difference between simulated and measured
cumulative input volume as in equation 7. Δfv(1, 84) and Δfe(1, 84) = difference between the LISFLOODFP‐HBV‐ and LISFLOODFP‐MEAS‐predicted flood-
plain inundation volumes and extents as in equations 8 and 9, respectively. All the differences were evaluated at the end of the investigated time series (i.e., 84
months). Cells n. = number of flooded cells.
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was observed in all the level 1 subcatchments, and it is also shown by the first quadrants of Figures 2b and
2d, where all the points are below the 1:1 line.
4.1.2.2. Moderate high‐flow periods
During moderate high‐flow periods IR was generally higher than 1; however, VDR was often negative, indi-
cating that LISFLOODFP‐HBV predicted smaller inundation volumes than did LISFLOODFP‐MEAS. This
counterintuitive outcome can be explained by the impact of flood peak values on the modeled inundation
volumes and extents. In these events, simulated input volumes were larger than measured values, but the
simulated flood peaks were lower than the observations, and PR was lower than 1. Lower simulated flood
peaks resulted in limited overflow from the main river to the floodplain and across the floodplain cells when
using LISFLOODFP‐HBV. Examples are the 2010 and 2012 flood events in subcatchment 23 as shown in the
second quadrant of Figure 2d (triangle and diamond symbols, respectively).
4.1.2.3. Large high‐flow periods
For large high flows, simulated input volumes and peak flows were lower than the measured values (IR < 1
and PR < 1), and consequently, LISFLOODFP‐HBV predicted lower inundation volumes and extents than
did LISFLOODFP‐MEAS (VDR > 0). In fact, absolute values of VDR were often higher than 1 (Tables 3
and S2), indicating that flood wave routing exacerbated the differences in input volumes. As a result, it
can be inferred that large measured flood peaks triggered extensive overflow from the river to the floodplain
and across the floodplain cells. Conversely, similarly extensive floodplain inundation was not achieved by
lower simulated flood peaks. This pattern can be clearly seen in the third quadrant of Figures 2b and 2d,
where the triangle representing the 2010 flood in subcatchment 11 and the square representing the 2011
flood in subcatchment 23 are on the right side of the 1:1 line. In particular, in subcatchment 23, 2011 pre-
flood inundation volumes were similar for both LISFLOODFP‐HBV and LISFLOODFP‐MEAS (Figure 2c).
Compared with LISFLOODFP‐HBV, LISFLOODFP‐MEAS was forced by a larger flood peak, which, com-
bined with the specific morphology of the area, resulted in the flooding of a larger number of cells. In fact,
in this area, a natural restriction (called the Barrackdale choke) exacerbated the impact of the underestima-
tion of flood peak values, causing a large discrepancy between inundation volumes predicted by
LISFLOODFP‐HBV and LISFLOODFP‐MEAS (Figure 3a).
4.1.3. Interactions Between Low‐ and High‐Flow Periods
4.1.3.1. Low‐flow periods impact on high‐flow periods
In a continuous modeling approach, preflood inundation conditions sensibly affected the discrepancies
between LISFLOODFP‐HBV and LISFLOODFP‐MEAS for large flood events. More specifically, IR values
higher than 1 and positive, yet low VDR values, during the low‐flow periods led to a progressive and steady
expansion of inundation volumes and extents predicted by LISFLOODFP‐HBV as opposed to the nearly zero
values predicted by LISFLOODFP‐MEAS. Consequently, in a continuous modeling approach, overestima-
tion of measured discharge values during low‐flow periods masked the differences in the prediction of inun-
dation volumes during high‐flow periods. This impact was observed in 15 hydrologically independent
subcatchments (specifically, subcatchments 1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 17, 19, 20, 21, and 24; Table S2). A
representative case is the 2010 flood in subcatchment 11 (Figure 2a, Table 3) for which Δfv(α,
endLHF) between increments of inundation volumes predicted by LISFLOODFP‐HBV and LISFLOODFP‐
MEAS were 0.043 km3 in a continuous modeling approach (α = 1) and −0.094 km3 in an event‐based mod-
eling approach (α = startLHF).

Table 3
Event‐Based Analysis of Hydrologically Independent Subcatchments (Level 1)

Subcatchment

Low flows Small high flows Large high flows Δfv(α, endLHF) (km3) Δfe(α, endLHF) (Cells n.)

IR VDR IR PR VDR IR PR VDR α = 1 α = startLHF α = 1 α = startLHF

11 25.62 0.59 0.96 0.88 1.67 0.77 0.73 1.61 0.043 −0.094 78 −18
23 14.12 0.27 1.09 0.91 −5.10 0.95 0.81 6.08 −2.749 −2.560 −605 −494
Mean level 1 9.57 0.21 1.18 0.88 −1.34 0.83 0.68 0.42 −0.180 −0.245 −3 −108
Median level 1 7.06 0.16 1.07 0.89 −0.81 0.8 0.68 0.55 −0.005 −0.065 −12 −31

Note. IR = inputs ratio as in equation 14. VDR = volumes difference ratio as in equation 15. PR = peaks ratio as in equation 16. Δfv(α, endLHF) and Δfe(α,
endLHF) = difference between the LISFLOODFP‐HBV‐ and LISFLOODFP‐MEAS‐predicted floodplain inundation volumes and extents for large high flows
as in equations 8 and 9, respectively. Here, Δfv(α, endLHF) and Δfe(α, endLHF) values are for the largest flood event. Cells n. = number of flooded cells.
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4.1.3.2. High‐flow periods impact on low‐flow periods
The event‐based analysis could explain negative PBIAS and NS values for continuous time series of inunda-
tion volumes previously mentioned for some of the hydrologically independent subcatchments (specifically,
subcatchments 3, 5, 13, 15, and 23, as shown in Tables 2 and S1). In these subcatchments, simulated input
volume and flood peak values were lower than the measured values for a sequence of high‐flow events.
Consequently, LISFLOODFP‐HBV predicted lower inundation values than did LISFLOODFP‐MEAS. This
negative difference increased with time and affected most of the analyzed time series, thus resulting in
the negative PBIAS and NS values shown in the continuous time series analysis.

4.2. Catchment Clusters
4.2.1. Level 2: South, North‐West, and North‐East Clusters
In level 2 clusters, simulated and measured input volume time series had a good overall agreement, as
demonstrated by the relatively low values of the RMSD listed in Table 4 and the relatively high values of
the NS and R2 reported in Table S3 (supporting information). However, the PBIAS of the input volume time
series had the opposite sign of the PBIAS of monthly maximum inundation volumes and extents with
LISFLOODFP‐HBV predicting lower inundation volumes and extents than those by LISFLOODFP‐MEAS
at the end of the modeling period (i.e., Δfv(1,84) and Δfe(1,84) had negative values, as shown in Table 4).
This result is also shown in Figures 4a, 4c, and 4e, with Table 5 listing the results of the analysis of low‐
and high‐flow periods. In each cluster, and consistently with the results of the hydrologically independent

Figure 3. Modeled monthly maximum inundation extent in the North‐East area of the Murray Darling Basin (a) after the 2011 flood event (February) and (b) after
the 2012 flood event (April). Location of the Barrackdale Choke (black oval) and downstream boundary of level 1 subcatchment 23 (green line) are also shown.
The close‐up insets show the discrepancies between LISFLOOD‐HBV and LISFLOOD‐MEAS.
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subcatchments, low‐flow periods were characterized by IR values larger than 1 andVDR positive, but close to
0 values, highlighting that inundation volumes discrepancies were smaller than input volumes discrepancies
(as shown in the first quadrant of Figures 4b, 4d, and 4f where most of the points are below the 1:1 line). In
moderate and large high‐flow periods, simulated flood peak values lower than observations (with PR lower
than 1) enhanced the negative difference between inundation volumes predicted by LISFLOODFP‐HBV and
LISFLOODFP‐MEAS, even when IRwas larger than 1 as for the 2010 event in North‐East cluster (Figures 4c
and 4d, and Table 5). In the South cluster, the impact of simulated flood peak values lower than observations
was exacerbated by the low accuracy of the SRTM, which hindered floodplain drainage in low‐slope areas,
and the difference between LISFLOODFP‐HBV and LISFLOODFP‐MEAS increased after each large flood
event in 2010, 2011, and 2012 (Figure 4a and Table 5).

In the North‐East cluster, the inundation volume and extent during the 2011 flood event were highly affected
by the different results of LISFLOODFP‐HBV and LISFLOODFP‐MEAS for subcatchment 23 (section 4.1.2
and Figures 2c, 2d, and 3a). Flood wave routing predicted by LISFLOODFP‐HBV could not trigger any flood-
ing downstream of the Barrackdale Choke. Conversely, LISFLOODFP‐MEAS predicted extensive floodplain
inundation up to the confluence with the Bokhara River (Figure 3a). Large inundated areas in 2011 were
quickly reactivated in 2012, and differences between LISFLOODFP‐HBV and LISFLOODFP‐MEAS
increased over time in the nearly flat area between the Bokhara and Barwon Rivers (Figure 3b).

In the North‐West cluster, large flood events in 2010 and 2012 offered a peculiar case study within the data-
base analyzed here. Simulated input volumes and flood peak values were larger than the measured data (IR
> 1 and PR > 1). Nevertheless, LISFLOODFP‐HBV predicted smaller inundation volumes than did
LISFLOODFP‐MEAS (VDR < −1; Figure 4f, second quadrant). Analysis of the number of flooded cells
allowed the understanding of this result. During the large 2008 flood, the simulated discharge hydrograph
triggered the flooding of a small number of cells in HRR 24 and 25 (location of these HRR can be seen in
Figure 1b) when compared to the results of LISFLOODFP‐MEAS (Figure 4e; negative PBIAS of modeled
inundation extents for catchment 24 in Table S1). Despite partial drainage of inundated areas,
LISFLOODFP‐MEAS reached conditions of incipient flooding, and most of the formerly flooded cells were
reactivated during the subsequent flood events, thus contributing to total flood inundation extents and
volumes larger than those of LISFLOODFP‐HBV.

In all the clusters, interaction between the morphological features and flashy characteristics of the flood
hydrographs resulted in large differences between LISFLOODFP‐HBV and LISFLOODFP‐MEAS. These dif-
ferences increased over time when using a continuous modeling approach. Conversely, differences between
LISFLOODFP‐HBV and LISFLOODFP‐MEAS were less severe when using an event‐based approach
(Table 5). For example, in the North‐East cluster, differences between inundation volumes Δfv(α,
endLHF) and extents Δfe(α, endLHF) for the 2012 flood were −1.20 km3 and −1,116 cells when using a con-
tinuous modeling approach (α = 1) but only−0.52 km3 and −661 cells when using an event‐based modeling
approach (α = startLHF).
4.2.2. Level 3 and Level 4 Clusters
Flooding in the Centre‐North cluster (level 3) of the MDB (Figure 1b) was driven by the North‐West cluster
in 2008, 2010, and 2012 and by the North‐East cluster in 2011. Differences between LISFLOODFP‐HBV and

Table 4
Continuous Time Series Analysis of Level 2 and Level 3 Clusters

Cluster

Daily input volume Cumulative input volume Inundation volume Inundation extent

RMSD
(km3)

PBIAS
(%)

RMSD
(km3)

PBIAS
(%)

Δiv(1,84)
(km3)

RMSD
(km3)

PBIAS
(%)

Δfv(1,84)
(km3)

RMSD
(Cells n.)

PBIAS
(%)

Δfe(1,84)
(Cells n.)

S 0.124 6.8 2.334 20.6 1.929 0.998 −30.4 −2.652 956 −38.3 −2,381
NE 0.185 34.1 3.356 48.9 6.136 0.566 −16.5 −0.408 417 −19.0 −242
NW 0.102 34.4 1.918 25.6 4.109 0.441 −58.5 −0.689 521 −61.4 −381
CN3 0.300 34.0 7.633 42.2 14.264 1.460 −28.0 −1.819 997 −26.2 −1,146

Note. RMSD = root mean square deviation as in equation 10. PBIAS = percent bias as in equation 11. Δ iv(1,84) = difference between simulated and measured
cumulative input volume as in equation 7.Δfv(1,84) andΔfe(1,84) = difference between the LISFLOODFP‐HBV‐ and LISFLOODFP‐MEAS‐predicted floodplain
inundation volumes and extents as in equations 8 and 9, respectively. All the differences were evaluated at the end of the investigated time series (i.e., 84months).
Cells n. = number of flooded cells. S = South; NE = North‐East; NW = North‐West; CN3 = Centre‐North, level 3.
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LISFLOODFP‐MEAS were small in 2008 and 2010 (Figure 5a and VDR ~0 in Table 5). In 2011,
morphological features loosely described by the SRTM combined with the flashy hydrological regime led
to flood inundation volume discrepancies larger than the discrepancies in input discharge hydrographs.
The simulated flood peak and total input volume in 2011 were lower than the observations (PR = 0.77
and IR = 0.91). LISFLOODFP‐HBV predicted a sensibly lower inundation volume than did
LISFLOODFP‐MEAS with a VDR of 1.37 (Figure 5b, square symbol in the third quadrant). These results
show that discrepancies detected for the level 2 clusters did not fade when analyzing larger downstream
areas. In fact, the disagreement between LISFLOODFP‐HBV and LISFLOODFP‐MEAS increased over
time and was moving in the downstream direction. In other words, flood wave routing exacerbated the

Figure 4. Analysis of level 2 clusters. (a, c, e) Time series of gauged and modeled input volumes (monthly and cumulative values) and monthly maximum
floodplain inundation volumes predicted by LISFLOODFP‐MEAS and LISFLOODFP‐HBV. (b, d, f) Event‐based comparison of differences of input volumes and
differences of monthly maximum floodplain inundation volumes; Δiv(α = start, β = end) and Δfv(α = start, β = end) as defined in Table 1, equation 7 and 8,
respectively. (a, b) South cluster; (c, d) North‐East cluster; and (d, e) North‐West cluster.
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discrepancies between the simulated and measured discharge time series. Moreover, differences between
LISFLOODFP‐HBV and LISFLOODFP‐MEAS were larger when using a continuous modeling approach
rather than an event‐based modeling approach. For instance, in 2012, differences between inundation
volumes Δfv(α, endLHF) and extents Δfe(α, endLHF) predicted by LISFLOODFP‐HBV and LISFLOODFP‐
MEAS were −3.776 km3 and −3,054 cells when using a continuous modeling approach (α = 1) and
−1.007 km3 and −1,187 cells when using an event‐based modeling approach (α = startLHF).

Results for the Centre‐South cluster (level 3) were consistent with the results of the South cluster (level 2)
and are not discussed in detail here. No relevant flooding was detected in either LISFLOODFP‐HBV or
LISFLOODFP‐MEAS predictions in the lower area of the MDB, that is, in HRR 26 and 27 (level 4). For this
reason, the analysis stopped at level 3 of the hierarchical basin approach.

5. Discussion
5.1. Study Design and Novelty

The cascading of errors from discharge prediction to floodplain dynamics is highly nonlinear, with previous
studies showing that uncertainties and inaccuracies in discharge hydrographs can have a large variability of
impacts on the prediction of floodplain inundation dynamics (e.g., McMillan & Brasington, 2008). To add to
the current state of knowledge, this paper presented a novel quantitative comparison between input volume
discrepancies and floodplain inundation volume discrepancies. A state‐of‐the‐art modeling framework,
which was implemented using freely available data sets, was used (a) to provide insight on the challenges,
pitfalls, and opportunities for flood inundation modeling at large spatial scales within the current modeling
capabilities; and (b) to allow the repeatability of this study in other areas worldwide.

The MDB, Australia's largest river system, was selected as a case study due to its large morphological and
climatic variability. The HBV hydrological model was used to simulate discharge hydrographs at 81 loca-
tions along the major river network for a 7‐year time period (2006–2012). Simulated andmeasured discharge
data were both used to force the hydraulic model LISFLOOD‐FP, with the latter model setup used as a
benchmark to investigate the impacts of discrepancies in input time series on the prediction of floodplain
inundation dynamics. The calibration period and gauge locations for HBV were the same as the modeled
period and input points used in LISFLOOD‐FP, which was calibrated in a previous study (Schumann
et al., 2016).

Rather than engaging in the validation of the predicted floodplain inundation volumes and extents using, for
instance, remote sensing observations, the aim of this numerical experiment was to use a state‐of‐the‐art
coupled modeling framework to analyze how discrepancies in input time series interact at different

Table 5
Event‐Based Analysis of Level 2 and Level 3 Clusters

Cluster

Low flows Small high flows Large high flows Δ fv(α, endLHF) (km3) Δ fe(α, endLHF) (Cells n.)

IR VDR IR PR VDR Year IR PR VDR α = 1 α = startLHF α = 1 α = startLHF

S 1.67 0.03 1.28 1.37 0.33 2011 0.87 0.63 1.20 −1.181 −1.392 −1,245 −1,383
2012 0.86 0.79 1.01 −2.331 −0473 −2,157 −583

NE 9.91 0.51 1.95 1.51 0.08 2010 1.08 0.93 −0.06 0.297 −0.013 −17 −150
2011 0.92 0.78 3.18 −2.214 −2.186 −1,271 −1,246
2012 0.93 0.85 2.21 −1.196 −0.517 −1,116 −661

NW 7.00 0.07 1.10 1.07 0.01 2008 0.78 0.78 0.28 −0.226 −0.193 −240 −232
2010 1.11 1.10 −1.32 −0.665 −0.507 −989 −975
2011 1.73 1.09 0.06 −0.458 0.061 ‐324 124
2012 1.26 1.02 −1.38 −1.543 −1.039 −2,876 −2,575

CN3 3.90 0.06 1.10 0.95 0.27 2008 0.94 0.85 0.50 −0.063 −0.148 −281 −381
2010 1.26 1.06 −0.01 0.385 −0.017 189 82
2011 0.91 0.77 1.37 −2.774 −3.044 −2,758 −2,895
2012 1.11 0.96 −1.17 −3.776 −1.007 −3,054 −1,187

Note. IR = inputs ratio as in equation 14. VDR = volumes difference ratio as in equation 15. PR = peaks ratio as in equation 16. Δfv(α, endLHF) and Δfe(α,
endLHF) = difference between the LISFLOODFP‐HBV‐ and LISFLOODFP‐MEAS‐predicted floodplain inundation volumes and extents for large high flows
as in equations 8 and 9, respectively. Cells n. = number of flooded cells. S = South; NE = North‐East; NW = North‐West; CN3 = Centre‐North, level 3.
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temporal and spatial scales via the hydraulic model to produce floodplain inundation patterns. A
hierarchical basin approach was used for this purpose and the analysis started with upstream, relatively
small, and hydrologically independent subcatchments, which were then progressively aggregated into
larger clusters until inclusion of the total basin area. Moreover, differences between results of a
continuous modeling approach and an event‐based approach were investigated.

5.2. Interactions Between Low‐ and High‐Flow Periods at Different Spatial Scales

Understanding the interactions between low‐ and high‐flow periods was essential to explaining floodplain
inundation patterns, with upstream, hydrologically independent subcatchments having a strong impact
on downstream aggregated clusters. During low‐flow periods, simulated input volumes were larger than
measured values, but flood wave routing attenuated these discrepancies with the discrepancies in input
volumes being larger than the discrepancies in inundation volumes. Such an effect was observed in all the
small, upstream subcatchments and all the clusters. During high‐flow periods, simulated input volumes
were often smaller than measured values. Continuous flood wave routing often partially masked these dis-
crepancies in small, upstream subcatchments, leading to similar inundation volumes for both input time ser-
ies; this effect was evident in 11 out of 19 subcatchments of level 1. Conversely, whenmoving from upstream
to downstream in large clusters, simulated flood hydrographs smaller than measured ones led to smaller
inundation volumes and extents and discrepancies in inundation volumes were higher than discrepancies
in input volumes for 7 out 13 flood events in level 2 and level 3 clusters. In fact, these discrepancies increased
during consecutive flood events and, consistently with the analysis of Pappenberger et al. (2005), differences
in floodplain inundation volumes triggered by differences in input hydrographs did not fade but rather
increased when moving from upstream to downstream. These results demonstrated that discrepancies in
input time series are often exacerbated by the hydraulic model for the prediction of floodplain inundation
volumes and extents at the large scale. An event‐based analysis at different spatial scales was then conducted
to investigate factors leading to such an effect.

5.3. Higher Relevance of Predictions of Flood Peaks Rather Than Flood Volumes

Analysis of large flow events in upstream subcatchments of level 1 showed that predictions of inundation
volume and extent were strongly sensitive to discrepancies in simulated and measured flood peak values.
More specifically, in 7 out of 19 subcatchments, values of simulated flood peak lower than measured data
resulted in relatively limited overflow from the main river to the floodplain and across the floodplain, thus
leading to large floodplain inundation discrepancies. Such a result may help explain the large sensitivity of
estimated flood losses to relatively small changes in input hydrographs shown by Sampson et al. (2014) and

Figure 5. Analysis of level 3 cluster: Centre‐North cluster. (a) Time series of gauged and modeled input volumes (monthly and cumulative values) and monthly
maximum floodplain inundation volumes predicted by LISFLOODFP‐MEAS and LISFLOODFP‐HBV. (b) Event‐based comparison of differences in input
volumes and differences in monthly maximum floodplain inundation volumes;Δiv(α= start, β= end) andΔfv(α= start, β = end) as defined in Table 1, equations 7
and 8, respectively.
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Zischg et al. (2018). Moreover, in five large flood events in level 1 subcatchments, measured flood peaks
higher than simulated ones led to significantly larger floodplain inundation volumes and extents, despite
the simulated input volumes being larger than the measurements. When modeling large clusters, flood
peak‐driven discrepancies in floodplain inundation dynamics increased with time and in downstream direc-
tion, as clearly shown, for instance, in the North‐East cluster.

The notion of the relatively large importance of flood peak value compared to flood volumes can guide the
development of hydrologic model calibration and error correction strategies. Albeit the use of an objective
function that is exclusively based on peak flows is not yet common practice in hydrological modeling at
the large scale (Hirpa et al., 2018), implementation of this strategy could leverage on previous experiences
at the catchment scale (e.g., Falter et al., 2016; Fenicia et al., 2007; Hostache et al., 2011). However, it is here
noted that while this strategy could enhance the predictive performance of the hydrologic model, uncertain-
ties in the simulated streamflow time series and errors in the prediction of the flood peak are likely to persist
when precipitation measurements are used as input (e.g., Falter et al., 2016; Hostache et al., 2011) and are
expected within a complete flood forecasting chain where precipitation is estimated. Moreover, challenges
in the transferability of model parameters calibrated on a historical time series under varying climatic con-
ditions have been demonstrated in a number of studies (Brigode et al., 2013; Romanowicz & Booij, 2015;
Vaze et al., 2010). Since uncertainties and errors in hydrograph predictions are (currently) inevitable, this
study had themerit to demonstrate the potential magnitude of the impacts of uncertainties in flood peak pre-
dictions on floodplain inundation modeling. Enhanced awareness of these uncertainties can support the
interpretation of model results; furthermore, investigation of possible joint factors was deemed essential
to suggest alternative solutions to improve floodplain inundation prediction skill within the current
modeling capabilities.

5.4. Hydrological Regime, Morphological Features, and Simulation Approach

Analysis of inundation dynamics at large temporal and spatial scales showed that the impact of discrepan-
cies between simulated and measured flood peaks was accentuated by a hydrological regime characterized
by long dry spells and high‐magnitude floods and by peculiar morphological features. Interaction of these
effects was evident, for instance, in subcatchment 23 where the impacts of uncertainties in the prediction
of flood peaks were exacerbated by a restriction, the Barrackdale Choke, thus leading to discrepancies in
inundation volumes and extents that affected inundation predictions in the North‐East cluster during all
the simulation period. In fact, a lack of adequate representation of critical morphological terrain features
in the SRTMDEM likely exacerbated the discrepancies highlighted above. Moreover, as shown, for instance,
in the level 3 South cluster, a low accuracy of the floodplain representation can also hinder floodplain drai-
nage in low‐slope areas. Whenmodeling a sequence of low‐ and high‐flow periods, underestimation of water
withdrawal and the well‐known difficulty of accurately predicting low flows (Garcia et al., 2017) can lead to
increasing errors in the prediction of floodplain dynamics and can hamper the accurate evaluation of the
duration of flooding. Nevertheless, the duration of flooding has a primary role on determining inundation
economic and environmental costs (Bates et al., 2018) and the results of this study advocate for more
research to improve the modeling skill of the drainage phase of large flood events.

Challenges posed to inundation prediction by the low accuracy of the widely used SRTM DEM (or versions
derived thereof) were pointed out in several other analyses (e.g., Bates et al., 2018; Sampson et al., 2015;
Sampson et al., 2016; Trigg et al., 2016). To tackle this issue, the creation of a new open‐access high‐accuracy
global DEM is being strongly advocated for by the flooding community (e.g., Sampson et al., 2016;
Schumann et al., 2014). Moreover, error‐corrected versions of the SRTM DEM such as the Australian
1‐arc‐sec‐resolution Hydrologically Enforced DEM (Gallant, Read, & Dowling, 2011; Gallant, Wilson,
et al., 2011) and the global 3‐arc‐sec‐resolution “Multi‐Error‐Removed Improved‐Terrain DEM (MERIT
DEM)” (Yamazaki et al., 2017) have been released, and strategies to enhance the efficiency of DEMs for
hydraulic modeling have been proposed (e.g., Baugh et al., 2013; Chen et al., 2018; Hirt, 2018; Jarihani
et al., 2015; Mason et al., 2016; O'Loughlin et al., 2016). However, any DEM is inherently affected by errors
and uncertainties, especially in highly complex morphological areas. For instance, Falter et al. (2016)
showed that inaccurate representation of morphological features led to large errors in the prediction of
floodplain extents despite the fact that the terrain representation was based on a 10‐m resolution with
±0.5‐ to 2‐m vertical accuracy database. Consequently, the methodology presented in this study, albeit
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simple and based on the modeling of two time series only, could be used to identify areas requiring more
accurate terrain representation and provide advice for targeted data collections.

Finally, the quantitative comparison developed in this study, showed that floodplain inundation uncertain-
ties and cascading errors due to the hydrological regime, morphological peculiarities, and the low accuracy
of digital terrain models all accumulated in a continuous modeling approach. Conversely, discrepancies
could be reduced by using an event‐based approach. Based on this insight, assimilation of inundation extents
and/or water level in both low‐ and high‐flow periods may provide a pragmatic strategy to achieve accepta-
ble skill in time‐continuous flood modeling; however, testing of a data assimilation strategy is out scope of
this paper.

5.5. Significance of the Study, Limitations, and Future Work

This study focused on one source of uncertainty (i.e., discrepancies between simulated and measured flood
hydrograph features) with the aim of providing a better understanding of the relationships between dis-
charge, flow paths, and inundation volumes as well as flood extents. In fact, a prediction scenario should
contemplate ensemble flood forecasting (Cloke & Pappenberger, 2009) and a thorough evaluation of all
the sources of uncertainty in order to produce probabilistic maps of inundation extents and levels.
However, computational constraints still limit the number of model runs that can be made in both an offline
and real‐time forecasting scenario (Bates et al., 2018). In this context, it is worth noting that the simple
approach of this study, in which only two flow time series were routed through a hydraulic model, was cap-
able of pinpointing areas critical for improving flood inundation modeling. For instance, the particular
flooding behavior of the Paroo and Warrego Rivers in HRR 24 and 25 (North‐West area of the MDB) due
to the complexity of the river and floodplain network was highlighted. A conceptual validation of this result
was found in previous studies based on the analysis of field and remote sensing (Landsat) data. In fact, Bunn
et al. (2006) and Heimhuber et al. (2016, 2017) showed that frequent and relatively low flow pulses in the
Paroo region lead to in‐channel flows without achieving floodplain inundation; conversely, increasing river
discharge values lead to a saturation point of incipient flooding, above which rare high peak flows cause a
large increase in surface water extent.

This study highlighted the importance of an accurate prediction of flood peak values for floodplain inunda-
tion modeling. Moreover, event‐based modeling and data assimilation in low and dry periods were envi-
saged as pragmatic solutions to improve floodplain inundation forecast skill. Conceptualization of the
outcomes of this study can be readily applied to improve the accuracy of long‐term flow modeling in the
MDB, thus providing a powerful tool to (i) support flood forecast and risk analysis (e.g., Domeneghetti
et al., 2018), (ii) complement remote sensing‐based investigations of surface flow connectivity and its ecolo-
gical implications (e.g., Bishop‐Taylor et al., 2015; Bishop‐Taylor et al., 2018; Heimhuber et al., 2016, 2017;
Huang et al., 2014; Tulbure et al., 2016), and (iii) support investigation of groundwater recharge due to flood-
ing (e.g., Doble et al., 2014).

Clearly, care should be taken when extrapolating the results of this numerical experiment to other basins,
with different morphologic characteristics and climatic conditions. In fact, as Bates et al. (2018) recently
stated, output from large‐scale models should be treated differently across different climate zones.
However, it should be noted that similarly to the MDB, many other large catchments worldwide have
a complex river network and experience large interannual and interdecadal hydrological variability asso-
ciated with climate modes such as El Niño‐Southern Oscillation, Pacific Decadal Oscillation, and the
North Atlantic Oscillation. Moreover, current climate change projection studies highlight a possible
amplification of wet and dry extremes (e.g., Armal et al., 2018; Betts et al., 2018; Lu et al., 2018; Taye
et al., 2015; Trenberth et al., 2003). Furthermore, the large impact of local morphologic features high-
lighted in this study alludes to the importance of accounting for the potential impact of flood defenses
in flood inundation prediction models, although a complete and accessible database of such infrastructure
is currently not available, except for a very limited number of countries or regions. In fact, it is suggested
that the presented methodology can be applied to other basins in order to define areas requiring tailored
modeling solutions, plan for resources and investments for data collection (e.g., survey of river banks, nat-
ural restrictions, and levee systems), and support the understanding of the main drivers of uncertainty
within a modeling cascade.
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6. Conclusions

Accurate predictions of spatiotemporal patterns of flooding as well as surface water dynamics are essential to
reduce flood‐related damage, increase resilience, improve flood risk estimation, allow equitable manage-
ment of global resources, and improve ecological systems services (e.g., Falter et al., 2015; Hanjra &
Qureshi, 2010; Ward et al., 2015). Coupled hydrologic‐hydraulic models are at the core of flood forecasting
and risk assessment models. In simple words, hydrologic models are used to predict discharge hydrographs,
which are then used as input to hydraulic models for the prediction of floodplain inundation dynamics. This
study used a numerical experiment to investigate the effects of discrepancies between simulated and mea-
sured discharge hydrographs on the prediction of floodplain inundation volumes and extents. Although
based on a specific large‐scale case study, the presented methodology can be applied to other basins in order
to define areas requiring tailored modeling solutions and suggest resource investments for data collection.

Complex morphological features and low‐accuracy topographic data hamper accurate flood modeling at the
basin scale, with inundation prediction uncertainties during low‐flow periods strongly affecting modeling
results across high‐flow periods. The analysis presented here highlights the large sensitivity of floodplain
dynamics to peak discharge values and the limitations of a time‐continuous flood modeling approach under
such conditions. Consequently, it is suggested that more accurate peak discharge predictions, better knowl-
edge about critical morphologic terrain features, and data assimilation of inundation extents and water
levels in both low‐ and high‐flow periods may provide a pragmatic strategy to achieve acceptable skill in
time‐continuous flood inundation modeling.

These conclusions can help improve forecast skill within the current modeling and implementation capabil-
ities, proactively contribute to recent efforts in the definition of more comprehensive methodologies for the
evaluation of flow forecasts (e.g., Cloke et al., 2017; Wetterhall et al., 2013), provide valuable guidance for
modeling choices, and support communication of uncertainties in model results to end users.
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